Find the exact value of each trigonometric function for the given angle θ.

Answer:
[tex]\sin (240^\circ)=-\dfrac{\sqrt{3}}{2},\cos (240^\circ)=-\dfrac{1}{2},\tan (240^\circ)=\sqrt{3},\cot (240^\circ)=\dfrac{1}{\sqrt{3}},\sec (240^\circ)=-2,\csc (240^\circ)=\dfrac{2}{\sqrt{3}}.[/tex]
Step-by-step explanation:
The given angle is 240 degrees.
We need to find the exact value of each trigonometric function for the given angle θ.
Since [tex]\theta=240[/tex], it means θ lies in 3rd quadrant. In 3d quadrant only tan and cot are positive.
[tex]\sin (240^\circ)=\sin (180^\circ+60^\circ)=-\sin (60^\circ)=-\dfrac{\sqrt{3}}{2}[/tex]
[tex]\cos (240^\circ)=\cos (180^\circ+60^\circ)=-\cos (60^\circ)=-\dfrac{1}{2}[/tex]
[tex]\tan (240^\circ)=\tan (180^\circ+60^\circ)=\tan (60^\circ)=\sqrt{3}[/tex]
[tex]\cot (240^\circ)=\cot (180^\circ+60^\circ)=\cot (60^\circ)=\dfrac{1}{\sqrt{3}}[/tex]
[tex]\sec (240^\circ)=\sec (180^\circ+60^\circ)=-\sec (60^\circ)=-2[/tex]
[tex]\csc (240^\circ)=\csc (180^\circ+60^\circ)=-\csc (60^\circ)=-\dfrac{2}{\sqrt{3}}[/tex]
Therefore, [tex]\sin (240^\circ)=-\dfrac{\sqrt{3}}{2},\cos (240^\circ)=-\dfrac{1}{2},\tan (240^\circ)=\sqrt{3},\cot (240^\circ)=\dfrac{1}{\sqrt{3}},\sec (240^\circ)=-2,\csc (240^\circ)=-\dfrac{2}{\sqrt{3}}.[/tex]