Answer :
Answer:
26.5 kD
Explanation:
Here we can apply the formula ∏ = iMRT, where ∏ = osmotic pressure = 0.56 - ( given ). This is only one part of the information we are given / can conclude in this case ....
i = van’t Hoff factor = 1 for a protein molecule,
R = gas constant = 62.36 L torr / K-mol,
T ( temperature in Kelvin ) = 25 + 273 - conversion factor C° + 273 = 298K
( Known initially ) ∏ = osmotic pressure = 0.56 torr
..... besides the part " M " in the formula, which we have no information on whatsoever, as we have to determine it's value.
_____
Substitute derived / known values to solve for M ( moles / liter ) -
∏ = iMRT
⇒ 0.56 = ( 1 )( M )( 62.36 )( 298 )
⇒ 0.56 = M( 18583.28 )
⇒ M = 0.56 / 18583.28 ≈ 0.00003013461 ....
_____
We know that M = moles / liter, so we can use this to solve for moles, and hence calculate the molar mass by the formula molar mass = g / mol -
M = mol / l
⇒ 0.00003013461 = 0.020 / 25 mL ( 0.025 L ),
0.020 / 0.025 = 0.8 g / L
⇒ 0.8 g = 0.00003013461 moles,
molar mass = 0.8 g / 0.00003013461 moles = 26,548 g / mol = 26.5 kD