what is the answer of this question ?

Answer:
Length = 51 centimeters
Width = 19 centimeters
Step-by-step explanation:
Length = l
Width = w
Length is 3w - 6
l = 3w - 6
P = 2l + 2w
The perimeter is given, plug in the values.
140 = 2(3w - 6) + 2w
140 = 6w - 12 + 2w
140 + 12 = 8w
152 = 8w
w = 19
The width is 19cm.
l = 3w - 6
l = 3(19) - 6
l = 57-6
l = 51
The length is 51 cm.
Answer:
[tex]\boxed{\red{width = 19 cm} }\\ \boxed{\red{
length = 3x-6}} \\
\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\red{= 51 cm}}
[/tex]
Step-by-step explanation:
let the width be x
Let's find the length
[tex]3x - 6[/tex]
Perimeter of a rectangle
[tex]p = 2(length + width) \\ p = 2(3x - 6 + x) \\ p = 6x - 12 + 2x \\ p = 8x - 12 \\ [/tex]
given that,
[tex]p = 140[/tex]
so,
[tex]140 = 8x - 12 \\ 140 + 12 = 8x \\ 152 = 8x \\ x = 19[/tex]
therefore,
width = 19 cm
length = 3x-6
= 51 cm