Answer :

Answer:

- 0.8

Step-by-step explanation:

The first thing we want to do here is simplify the expression -

[tex]\frac{3}{5}[/tex]( 2x + 5 ) - 2x, Distribute the " [tex]\frac{3}{5}[/tex] " to elements within the parenthesis

= [tex]\frac{3}{5}[/tex] [tex]*[/tex] 2x + [tex]\frac{3}{5}[/tex] [tex]*[/tex] 5 - 2x, Focus on simplifying the expression " [tex]\frac{3}{5}[/tex] [tex]*[/tex] 2x + [tex]\frac{3}{5}[/tex] [tex]*[/tex] 5 "

= [tex]2\cdot \frac{3}{5}x+5\cdot \frac{3}{5}[/tex] - 2x

= [tex]\frac{6x}{5}+3[/tex] - 2x, Combine fractions

= [tex]-\frac{4x}{5}[/tex] + 3

= [tex]-\frac{4}{5}[/tex]x + 3

So we have our simplified expression "  [tex]-\frac{4}{5}[/tex]x + 3, " with [tex]-\frac{4}{5}[/tex] being the coefficient of x. Our requirements are that this fraction should be expressed as a decimal, so we can simply divide the numerator by the denominator to figure that out,

- 4 / 5 = - 0.8,

Solution = - 0.8

Other Questions