Answer :
Answer:
The answer is "21,622.98".
Explanation:
In the given question some information is missing, which can be defined in the given attachment.
To calculate the first cost we first subtract B cost is to X.
NPV = Cash Flow of the sum of PV amount
[tex]PV = \frac{Flow of cash} {(1+i)^n} \\\\ \ Calculating \ the \ NPV \ of \ option \ A: \\\\[/tex]
[tex]= \frac{-16600}{(1 + 0.08)^0}-\frac{2400}{(1 + 0.08)^1}-\frac{2400}{(1 + 0.08)^2} -\frac{2400}{(1 + 0.08)^3}-\frac{2400}{(1 + 0.08)^4}[/tex]
[tex]= \frac{-16600}{1}-\frac{2400}{1.08}-\frac{2400}{1.16}-\frac{2400}{1.25}-\frac{2400}{1.36}[/tex]
[tex]=-16600-2222.22-2068.96-1920-1764.70\\\\=-24,575.88[/tex]
The value of Option A or NPV = -24,575.88
The value of Option B or NPV:
[tex]=-\frac{X}{(1 + 0.80)^0}-\frac{1000}{(1 + 0.08)^1} -\frac{1000}{(1 + 0.08)^2}-\frac{1000}{(1 + 0.08)^3}-\frac{1000}{(1 + 0.08)^4} \\\\ =-\frac{X}{(1.80)^0}-\frac{1000}{(1.08)^1} -\frac{1000}{(1.08)^2}-\frac{1000}{(1.08)^3}-\frac{1000}{(1.08)^4}[/tex]
[tex]= -\frac{X}{1}-\frac{1000}{1.08}-\frac{1000}{1.16}-\frac{1000}{1.25}-\frac{1000}{1.36}\\\\= -X -555.55-862.06-800-735.29\\\\=-X -2952.9[/tex]
The value of Option B or NPV = -X -2952.9
As demanded
In Option B the value of NPV = In Option A the value of NPV
[tex]-X -2952.9= -24,575.88\\\\-X= -21,622.98\\\\X=21,622.98\\[/tex]
