What two rational expressions sum to [tex]\frac{4x+2}{x^{2}-9+8 }[/tex] Enter your answer by filling in the boxes. Enter your answer so that each rational expression is in simplified form.

What two rational expressions sum to [tex]\frac{4x+2}{x^{2}-9+8 }[/tex] Enter your answer by filling in the boxes. Enter your answer so that each rational expre class=

Answer :

MrRoyal

Answer:

[tex]\frac{4x+2}{x^2 - 9x + 8} = \frac{4x}{(x-8)(x-1)} + \frac{2}{(x-8)(x-1)}[/tex]

Step-by-step explanation:

Given

[tex]\frac{4x+2}{x^{2}-9+8 } = \frac{A}{()(x-1)} + \frac{B}{()(x-8)}[/tex]

Required

Fill in the gaps

Going by the given parameters, we have that

[tex]\frac{4x+2}{x^{2}-9+8 } = \frac{A}{()(x-1)} + \frac{B}{()(x-8)}[/tex]

[tex]x^2 - 9x + 8[/tex], when factorized is [tex](x-1)(x-8)[/tex]

Hence; the expression becomes

[tex]\frac{4x+2}{(x-1)(x-8)} = \frac{A}{(x-8)(x-1)} + \frac{B}{(x-1)(x-8)}[/tex]

Combine Fractions

[tex]\frac{4x+2}{(x-1)(x-8)} = \frac{A + B}{(x-8)(x-1)}[/tex]

Simplify the denominators

[tex]4x + 2 = A + B[/tex]

By direct comparison

[tex]A = 4x[/tex]

[tex]B = 2[/tex]

Hence, the complete expression is

[tex]\frac{4x+2}{x^2 - 9x + 8} = \frac{4x}{(x-8)(x-1)} + \frac{2}{(x-8)(x-1)}[/tex]

Answer:4x+2/x2−9x+8 = −6/7(x−1) + 34/7(x−8)

Other Questions