What two rational expressions sum to [tex]\frac{4x+2}{x^{2}-9+8 }[/tex] Enter your answer by filling in the boxes. Enter your answer so that each rational expression is in simplified form.
![What two rational expressions sum to [tex]\frac{4x+2}{x^{2}-9+8 }[/tex] Enter your answer by filling in the boxes. Enter your answer so that each rational expre class=](https://us-static.z-dn.net/files/dd7/c5dd3cde999a37f63b0e20d64ad597b4.png)
Answer:
[tex]\frac{4x+2}{x^2 - 9x + 8} = \frac{4x}{(x-8)(x-1)} + \frac{2}{(x-8)(x-1)}[/tex]
Step-by-step explanation:
Given
[tex]\frac{4x+2}{x^{2}-9+8 } = \frac{A}{()(x-1)} + \frac{B}{()(x-8)}[/tex]
Required
Fill in the gaps
Going by the given parameters, we have that
[tex]\frac{4x+2}{x^{2}-9+8 } = \frac{A}{()(x-1)} + \frac{B}{()(x-8)}[/tex]
[tex]x^2 - 9x + 8[/tex], when factorized is [tex](x-1)(x-8)[/tex]
Hence; the expression becomes
[tex]\frac{4x+2}{(x-1)(x-8)} = \frac{A}{(x-8)(x-1)} + \frac{B}{(x-1)(x-8)}[/tex]
Combine Fractions
[tex]\frac{4x+2}{(x-1)(x-8)} = \frac{A + B}{(x-8)(x-1)}[/tex]
Simplify the denominators
[tex]4x + 2 = A + B[/tex]
By direct comparison
[tex]A = 4x[/tex]
[tex]B = 2[/tex]
Hence, the complete expression is
[tex]\frac{4x+2}{x^2 - 9x + 8} = \frac{4x}{(x-8)(x-1)} + \frac{2}{(x-8)(x-1)}[/tex]