Answer :

xKelvin

Answer:

[tex]x=\frac{(a^2+ab)}{a-b}[/tex]

Step-by-step explanation:

So we want to make x the subject of the formula:

[tex]a(x-b)=a^2+bx[/tex]

First, distribute the left side:

[tex]a(x)-a(b)=a^2+bx\\ax-ab=a^2+bx[/tex]

Combine all the terms with x with it on one side. To do this, first subtract bx from both sides. The right side cancels:

[tex](ax-ab)-bx=(a^2+bx)-bx\\ax-ab-bx=a^2[/tex]

Remove the -ab from the left. Add ab to both sides. The left side cancels:

[tex](ax-ab-bx)+ab=a^2+ab\\ax-bx=a^2+ab[/tex]

Now, distribute out the x from the left side:

[tex]ax-bx=a^2+ab\\x(a-b)=a^2+ab[/tex]

Divide both sides by (a-b). The left side cancels:

[tex]\frac{(x(a-b))}{a-b}=\frac{(a^2+ab)}{a-b} \\x=\frac{(a^2+ab)}{a-b}[/tex]

Therefore:

[tex]x=\frac{(a^2+ab)}{a-b}[/tex]

zibahkeshiro

Answer:

Step-by-step explanation:

ax -ab = + bx

collect like terms

ax-bx= +ab

factorise

x(a-b)=a(a+b)

x=[tex]\frac{a(a+b)}{a-b}[/tex] or [tex]\frac{a^{2} + ab}{a -b}[/tex]

Other Questions