Answer :

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{x = - 10}}}}}[/tex]

Step-by-step explanation:

[tex] \sf{ \frac{5}{6} = \frac{x - 10}{3x + 6} }[/tex]

Apply cross product property

⇒[tex] \sf{5(3x + 6) = 6( x - 10)}[/tex]

Distribute 5 through the parentheses

⇒[tex] \sf{15x + 30 = 6( x - 10)}[/tex]

Distribute 6 through the parentheses

⇒[tex] \sf{15x + 30 = 6x - 60}[/tex]

Move 6x to left hand side and change it's sign

⇒[tex] \sf{15x - 6x + 30 = - 60}[/tex]

Collect like terms

⇒[tex] \sf{9x + 30 = - 60}[/tex]

Move 30 to right hand side and change it's sign

⇒[tex] \sf{9x = - 60 - 30}[/tex]

Calculate

⇒[tex] \sf{9x = - 90}[/tex]

Divide both sides of the equation by 9

⇒[tex] \sf{ \frac{9x}{9} = \frac{ - 90}{9} }[/tex]

Calculate

⇒[tex] \sf{x = - 10}[/tex]

Hope I helped!

Best regards!!

Other Questions