Answer :
Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{x = - 10}}}}}[/tex]
Step-by-step explanation:
[tex] \sf{ \frac{5}{6} = \frac{x - 10}{3x + 6} }[/tex]
Apply cross product property
⇒[tex] \sf{5(3x + 6) = 6( x - 10)}[/tex]
Distribute 5 through the parentheses
⇒[tex] \sf{15x + 30 = 6( x - 10)}[/tex]
Distribute 6 through the parentheses
⇒[tex] \sf{15x + 30 = 6x - 60}[/tex]
Move 6x to left hand side and change it's sign
⇒[tex] \sf{15x - 6x + 30 = - 60}[/tex]
Collect like terms
⇒[tex] \sf{9x + 30 = - 60}[/tex]
Move 30 to right hand side and change it's sign
⇒[tex] \sf{9x = - 60 - 30}[/tex]
Calculate
⇒[tex] \sf{9x = - 90}[/tex]
Divide both sides of the equation by 9
⇒[tex] \sf{ \frac{9x}{9} = \frac{ - 90}{9} }[/tex]
Calculate
⇒[tex] \sf{x = - 10}[/tex]
Hope I helped!
Best regards!!