Answer :
[tex]\boxed{c = -4}[/tex]
First, we will use the distributive property (order of operations) to simplify the equation:
(4)(5) + (4)(−8(4c−3)) = (12)(1) + (12)(−13c)+ (−8) =
20 + (−128c) + 96 = 12 + (−156c)+ (−8)
Now, we will combine like terms to simplify the equation:
(−128c) + (20 + 96) = (−156c) + (12+ (−8) =
−128c + 116 = −156c + 4
Now we will add 156 to both sides, using inverse operations.
−128c + 116 + 156c = −156c + 4 + 156c =
28c + 116 = 4
Now we will subtract 116 from both sides:
28c + 116 − 116 = 4 − 116 =
28c = −112
Lastly, we will divide both sides by 28:
28c/28 = c
-112/28 = -4
The equation now looks like:
c = -4
Therefore, your answer is -4.
Hi there! Hopefully this helps!
--------------------------------------------------------------------------------------------------
Answer: [tex]\boxed{c = -4}[/tex]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[tex]4(5-8(4c-3))=12(1-13c)-8[/tex]
Use the distributive property to multiply −8 by 4c − 3.
[tex]4(5-32c+24)=12(1-13c)-8[/tex]
Add 5 and 24 to get 29.
[tex]4(29 - 32c)=12(1-13c)-8[/tex]
Use the distributive property to multiply 4 by 29 − 32c.
[tex]116-128c=12(1-13c)-8[/tex]
Use the distributive property to multiply 12 by 1 − 13c.
[tex]116-128c=12-156c-8[/tex]
Subtract 8 from 12 to get 4.
[tex]116-128c=4-156c[/tex]
Add 156c to both sides.
[tex]116 - 128c+156c=4[/tex]
Combine −128c and 156c to get 28c.
[tex]116+28c=4[/tex]
Subtract 116 from both sides.
[tex]28c=4-116[/tex]
Subtract 116 from 4 to get −112.
[tex]28c=-112[/tex]
Divide both sides by 28.
[tex]c=\frac{-112}{28}[/tex]