Answer :

Answer:

(c-5)(c-13)

Explanation:

[tex]c^2-18c+65\\\\\mathrm{Break\:the\:expression\:into\:groups}\\=\left(c^2-5c\right)+\left(-13c+65\right)\\\\\mathrm{Factor\:out\:}c\mathrm{\:from\:}c^2-5c\mathrm{:\quad }c\left(c-5\right)\\\\\mathrm{Factor\:out\:}-13\mathrm{\:from\:}-13c+65\mathrm{:\quad }-13\left(c-5\right)\\\\=c\left(c-5\right)-13\left(c-5\right)\\\\\mathrm{Factor\:out\:common\:term\:}c-5\\=\left(c-5\right)\left(c-13\right)[/tex]