Answer :
Answer:
Step-by-step explanation:
let x and y be the sides of the rectangle.
2(x+y)=44
x+y=44/2=22
y=22-x
1 tile=1 sq. ft.
120 tiles=120 sq.ft.
area=120 sq.ft.
xy=120
x(22-x)=120
22x-x²=120
x²-22x+120=0
x²-12x-10x+120=0
x(x-12)-10(x-12)=0
(x-12)(x-10)=0
x=12,10
if x=12
y=22-12=10
if x=10
y=22-10=12
floor dimensions are 12 ft ×10 ft
The floor dimensions are 12 ft ×10 ft.
Let the length and breadth of the rectangle be x and y.
The perimeter of the rectangular room is P=2(x+y)
[tex]2(x+y)=44\\x+y=22\\y=22-x[/tex]
1 tile=1 sq. ft.
120 tiles=120 sq.ft.
Area of the rectangular room=120 sq.ft.
So, xy=120
Put y=22-x in xy=120
[tex]x(22-x)=120\\22x-x^{2} =120\\x^{2} -22x+120=0\\x^{2} -12x-10x+120=0\\x(x-12)-10(x-12)=0\\(x-12)(x-10)=0\\x=12,10[/tex]
if x=12then y=22-12=10
if x=10 then y=22-10=12
Therefore, the floor dimensions are 12 ft ×10 ft
Learn more:https://brainly.com/question/20593671