Answered

2. A simple of 900 students has mean 3.5 cm and standard deviation 2.61 cm is the sample from a large population of mean 3.25 cm and standard deviation 2.61 cm? Check at 99% level of confidence. Also find the range. ​

Answer :

Answer:

The sample mean is not from a large population with  mean 3.25 cm and standard deviation 2.61 cm

The range is  [tex]3.28 < \mu <3.72[/tex]

Step-by-step explanation:

From the question we are told that

   The  sample  size is  n  =  900

   The  sample  mean is  [tex]\= x = 3.5 \ cm[/tex]

    The  standard deviation is  [tex]s = 2.61 \ cm[/tex]

    The population mean is   [tex]\mu = 3.25 \ cm[/tex]

    The  population standard deviation [tex]\sigma = 2.61 \ cm[/tex]

Given that confidence level is  99% the significance level is evaluated as

        [tex]\alpha = (100 - 99)\%[/tex]

        [tex]\alpha = 0.01[/tex]

The  critical value  of  [tex]\frac{\alpha }{2}[/tex] is obtained from the normal distribution table , the value is

        [tex]Z_{\frac{\alpha }{2} } = 2.58[/tex]

The  null hypothesis  [tex]\mu = \= x[/tex]

The  alternative  [tex]\mu \ne \= x[/tex]

Generally the test statistics is mathematically represented

      [tex]t = \frac{\= x - \mu }{ \frac{s}{ \sqrt{n} } }[/tex]

=>   [tex]t = \frac{3.5 - 3.25}{ \frac{2.61}{ \sqrt{900} } }[/tex]

=>   [tex]t = 2.9[/tex]

The  p-value  is  from the z-table , the value  is  

      [tex]p-value = 2 P(Z > 2.61) = 2 * 0.0018658 = 0.004[/tex]

  So we can see that  [tex]p-value < \alpha[/tex] so we reject the null hypothesis

Hence the sample mean is not from a large population with  mean 3.25 cm and standard deviation 2.61 cm

Generally the margin of error is mathematically represented as

      [tex]E = Z_{\frac{\alpha }{2} } * \frac{s}{\sqrt{n} }[/tex]

     [tex]E = 2.58 * \frac{2.61}{\sqrt{900} }[/tex]

     [tex]E = 0.224[/tex]

The range is evaluated as

     [tex]\= x - E < \mu < \= x + E[/tex]

=>  [tex]3.5 - 0.224 < \mu < 3.5 + 0.224[/tex]

=>  [tex]3.28 < \mu <3.72[/tex]

   

Other Questions