Answer :
Answer:
[tex]x = -1[/tex]
Step-by-step explanation:
-Solve for [tex]x[/tex] :
[tex]8x + 1 = -8 - x[/tex]
-Add both side by [tex]x[/tex] :
[tex]8x + 1 + x = -8 - x + x[/tex]
[tex]9x + 1 = -8[/tex]
-Subtract both sides by [tex]1[/tex] :
[tex]9x + 1 - 1 = -8 - 1[/tex]
[tex]9x = -9[/tex]
-Divide both sides by [tex]9[/tex] :
[tex]\frac{9x}{9} = \frac{-9}{9}[/tex]
[tex]x = -1[/tex]
So, the value of [tex]x[/tex] is [tex]-1[/tex].
Answer:
[tex] \boxed{\sf x = - 1} [/tex]
Step-by-step explanation:
[tex] \sf Solve \: for \: x: \\ \sf \implies 8x + 1 = - 8 - x \\ \\ \sf Add \: x \: to \: both \: sides: \\ \sf \implies 8x + x + 1 = - 8 + (x - x ) \\ \\ \sf x - x = 0 : \\ \sf \implies 8x +x + 1 = - 8 \\ \\ \sf 8x + x = 9x : \\ \sf \implies 9x + 1 = - 8 \\ \\ \sf Subtract \: 1 \: from \: both \: sides: \\ \sf \implies 9x + (1 - 1 )= - 8 - 1 \\ \\ \sf 1 - 1 = 0 : \\ \sf \implies 9x = - 8 - 1 \\ \\ \sf - 8 - 1 : \\ \sf \implies 9x = - 9 \\ \\ \sf Divide \: both \: sides \: of \: 9 x = 9 \: by \: 9: \\ \sf \implies \frac{9x}{9} = - \frac{9}{9} \\ \\ \sf \frac{9}{9} = 1 : \\ \sf \implies x = - 1[/tex]