Answer :

tramserran

Answer:  see proof below

Step-by-step explanation:

Given: A + B + C = 90°                  → A + B = 90° - C

                                                     → C = 90° - (A + B)

Use the Double Angle Identity:      cos 2A = 1 - 2 sin² A

                                                       → sin² A = (1 - cos 2A)/2

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B

Use the Cofunction Identities:      cos (90° - A) = sin A

                                                       sin (90° - A) = cos A

Proof LHS → RHS:

LHS:                       sin² A + sin² B + sin² C

[tex]\text{Double Angle:}\qquad \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+\sin^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2-\cos 2A-\cos 2B\bigg)+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\sin^2 C[/tex]

[tex]\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C[/tex]

Given:                1 - cos (90° - C) · cos (A - B) + sin² C

Cofunction:       1 - sin C · cos (A - B) + sin² C

Factor:               1 - sin C [cos (A - B) + sin C]

Given:                1 - sin C[cos (A - B) - sin (90° - (A + B))]

Cofunction:       1 - sin C[cos (A - B) - cos (A + B)]

Sum to Product:       1 - sin C [2 sin A · sin B]

                            = 1 - 2 sin A · sin B · sin C

LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C   [tex]\checkmark[/tex]

${teks-lihat-gambar} tramserran
${teks-lihat-gambar} tramserran

Other Questions