Answer :

LammettHash

Recall that

[tex]\|\mathbf u\times\mathbf v\|=\|\mathbf u\|\|\mathbf v\|\sin\theta[/tex]

where [tex]\theta[/tex] is the angle between the vectors [tex]\mathbf u[/tex] and [tex]\mathbf v[/tex]. No need to actually compute the cross product.

We can find the angle between the vectors using the dot product formula,

[tex]\mathbf u\cdot\mathbf v=\|\mathbf u\|\|\mathbf v\|\cos\theta[/tex]

[tex]\implies\theta=\cos^{-1}\left(\dfrac{(2\mathbf i+2\mathbf j-\mathbf k)\cdot(-\mathbf i+\mathbf k)}{\sqrt{2^2+2^2+(-1)^2}\sqrt{(-1)^2+1^2}}\right)=\cos^{-1}\left(-\dfrac1{3\sqrt2}\right)[/tex]

Then

[tex]\|\mathbf u\times\mathbf v\|=3\sqrt2\sin\theta=\boxed{\sqrt{17}}[/tex]

Other Questions