Answered

Evaluate the indefinite integral as a power series f(x) = 1 tan-1(x7) dx n=0
What is the radius of convergence R? R= -/0.77 points
Evaluate the indefinite integral as a power series x7 In(1 x) dx f(x) = C + n=0
What is the radius of convergence R?

Answer :

Answer:

A.

[tex]\mathbf{f(x)=C + \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n \ x^{14n +8}}{(2n+1)(14n+8)}}[/tex]

For convergence  since |x| > 1

The radius of convergence R = 1

B.

[tex]\mathbf{f(x) = C + \sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n \ x^{n+9}} {(n+1) (x^{n+9})}}[/tex]

For convergence  since |x| < 1

The radius of convergence R = 1

Step-by-step explanation:

A.

Given that:

[tex]f(x) = \int tan^{-1} (x^7) \ dx[/tex]

Let recall that for Power series of tan⁻¹ (x)

[tex]tan^{-1} (x) = \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n x^{2n+1}}{(2n+1)}[/tex]

Then [tex]tan^{-1} (x^7) = \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n (x^7)^{2n+1}}{(2n+1)}[/tex]

[tex]tan^{-1} (x^7) = \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n \ x^{14n+7}}{(2n+1)}[/tex]

Thus;

[tex]f(x) =\int tan^{-1} (x^7) \ dx = \int \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n \ x^{14n+7}}{(2n+1)}[/tex]

[tex]\implies \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n }{(2n+1)} \int x^{14n+7} \ dx[/tex]

[tex]\mathbf{f(x)=C + \sum \limits ^{\infty}_{n=0} \dfrac{(-1)^n \ x^{14n +8}}{(2n+1)(14n+8)}}[/tex]

For convergence  since |x| > 1

The radius of convergence R = 1

B.

[tex]\int x^7 \ In (1 + x) \ dx[/tex]

Recall that for power series of,

[tex]In(1+x) = \sum \limits ^{\infty}_{n = 0} \dfrac{(-1)^n \ x^{n+1}}{n +1}[/tex]

Thus;

[tex]x^7 \ In (1+x) = x^7 \sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n \ x^{n+1} }{n+1}[/tex]

[tex]\implies \sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n \ x^{n+8} }{n+1}[/tex]

[tex]f(x) = \int x^7 \ In (1+x) \ dx = \int \sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n \ x^{n+8} }{n+1} \ dx[/tex]

[tex]=\sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n}{n+1} \int \ x^{n+8} \ dx[/tex]

[tex]\mathbf{f(x) = C + \sum \limits ^{\infty}_{n =0} \dfrac{(-1)^n \ x^{n+9}} {(n+1) (x^{n+9})}}[/tex]

For convergence  since |x| < 1

The radius of convergence R = 1