Answered

Order of Operations

If the Order of Operations did not exist, how many

possible solutions can you find for this expression?

4 + 9 + 16 : 4 - 8 – 3 x 5

Answer :

Given:

[tex]4 + 9 + 16 \div 4 - 8 -3 \times 5[/tex]

To find:

The number of possible solutions, if the Order of Operations did not exist.

Solution:

We have,

[tex]4 + 9 + 16 \div 4 - 8 -3 \times  5[/tex]

Now,

Case 1:

[tex][4 + 9 + 16] \div [4 - 8 -(3 \times  5)]=29\div (4 - 8 -15)[/tex]

[tex]4 + 9 + 16 \div  4 - 8 -(3 \times  5)=-\dfrac{29}{19}[/tex]

Case 2:

[tex][4 + 9 + 16] \div  (4 - 8 -3) \times  5=29\div  (-7\times 5)[/tex]

[tex]4 + 9 + 16 \div  (4 - 8 -3) \times  5=-\dfrac{29}{35}[/tex]

Case 3:

[tex]4 + 9 + (16 \div 4) - 8 -(3 \times  5)=4+9+4-8-15[/tex]

[tex]4 + 9 + (16 \div 4) - 8 -(3 \times  5)=-6[/tex]

Many more possibilities are there.

Therefore, there are more than 3 possible solutions.

Other Questions