Evaluate and simplify the expression
when a = 4 and b = -1.

Answer:
[tex] \frac{3}{2} [/tex]
Step-by-step explanation:
[tex] \frac{5 - 2(a + 3b)}{2} [/tex]
substitute a = 4 and b = -1
[tex] = \frac{5 - 2(4 + 3( - 1))}{2} [/tex]
expand and simplify the numerator
[tex] = \frac{5 - 2(4 - 3)}{2} [/tex]
[tex] = \frac{5 - 2(1)}{2} [/tex]
[tex] = \frac{5 - 2}{2} [/tex]
[tex] = \frac{3}{2} [/tex]
When a = 4, b = -1 the value of given expression would be,
[tex]\bold{\frac{5-2(a+3b)}{2} =\frac{3}{2}}[/tex]
"An expression is a combination of numbers, variables and mathematical operation."
For given example,
We need to evaluate the expression [tex]\frac{5-2(a+3b)}{2}[/tex]
Substitute a = 4 and b = -1 in given expression.
= [tex]\frac{5-2(4+3(-1))}{2}[/tex]
= [tex]\frac{5-2(4-3)}{2}[/tex]
= [tex]\frac{5-2}{2}[/tex]
= 3/2
Therefore, for a = 4, b = -1 , [tex]\bold{\frac{5-2(a+3b)}{2} =\frac{3}{2}}[/tex]
Learn more about expression here:
https://brainly.com/question/1041084
#SPJ2