Answer :
Answer:
103.52 km/h
Explanation:
We are given;
Distance between two cities; d = 4300 km
airspeed; v_as = 930 km/h
Difference in flight time; Δt = 61 min = 1.0167 h
Now, the equation of motion to find the distance is given as;
d = vt
Where v = v_as + v_js
v_as is the airspeed
v_js is the jet speed
Thus;
d = (v_as + v_js)t
Thus, time(t1) for outgoing flight is;
t1 = d/(v_as + v_js)
Meanwhile, time(t2) for the return flight, the jet stream velocity will be negative and time is;
t2 = d/(v_as - v_js)
Recall that Difference in flight time; Δt = 61 min.
Thus;
Δt = t2 - T1 = [d/(v_as - v_js)] - [d/(v_as + v_js)]
Factorizing out, we have;
Δt = d[1/(v_as - v_js)] - [1/(v_as + v_js)]
Furthermore, it gives;
Δt = d[(v_as + v_js - v_as + v_js)]/((v_as - v_js) × (v_as + v_js))
Δt = d(2v_js)/((v_as)² - (v_js)²)
Cross multiply to get;
(2dv_js)/Δt = ((v_as)² - (v_js)²)
(v_js)² + ((2dv_js)/Δt) - (v_as)² = 0
Plugging in values for d,v_as and Δt gives;
(v_js)² - ((2 × 4300 × v_js)/1.0167) - (930)² = 0
(v_js)² - (8458.7329v_js) - 864900 = 0
Using quadratic formula, we have;
v_js = 103.52 km/h