Answer :
[tex]\sf Length\:=\:(x+7) \\\\\sf
Breadth\:=\:(x+3) \\\\\sf
Area= Length\: x\: Breadth \\\\\sf
=(x+3)(x+7) \\\\\sf
=x^2+7x+3x+21 \\\\\sf
=x^2+10x+21 \\\\\sf
\boxed{Area=x^2+10x+21} \\\\ \\\\\sf
Now, \:Perimeter\:=\: 2x(length +breadth) \\\\\sf
=2(2x+10) \\\\\sf
=4x+20 \\\\\sf
\boxed{Perimeter=4x+20} [/tex]
[tex]l = (x + 3) \\ b = (x + 7)[/tex]
Area:
[tex] = l \times b \\ = (x + 3)(x + 7) \\ = x(x + 7) + 3(x + 7) \\ = {x}^{2} + 7x + 3x + 21 \\ = {x}^{2} + 10x + 21[/tex]
Perimeter:
[tex] = 2(l + b) \\ = 2((x + 3) + (x + 7)) \\ = 2(x + 3 + x + 7) \\ = 2(2x + 10) \\ = 4x + 20[/tex]