Answer :

gmany

Answer:

[tex]\huge\boxed{\dfrac{4}{7};\ \dfrac{5}{8};\ 0.7;\ 72\%}[/tex]

Step-by-step explanation:

Two ways.

1. Convert to the decimal:

[tex]\dfrac{4}{7}=4:7=0.\overline{571428}\\\\\dfrac{5}{8}=5:8=0.625\\\\0.7=0.7\\\\72\%=\dfrac{72}{100}=0.72[/tex]

therefore

[tex]0.\overline{571428}<0.625<0.7<0.72}[/tex]

[tex]\dfrac{4}{7};\ \dfrac{5}{8};\ 0.7;\ 72\%[/tex]

2. Convert to the fractions with common denominator.

[tex]\dfrac{4}{7};\ \dfrac{5}{8}\\\\0.7=\dfrac{7}{10}\\\\72\%=\dfrac{72}{100}=\dfrac{18}{25}[/tex]

[tex]LCD=7\cdot8\cdot5\cdot5=1400\\\\\dfrac{4}{7}=\dfrac{4\cdot200}{7\cdot200}=\dfrac{800}{1400}\\\\\dfrac{5}{8}=\dfrac{5\cdot175}{8\cdot175}=\dfrac{875}{1400}\\\\0.7=\dfrac{7}{10}=\dfrac{7\cdot140}{10\cdot140}=\dfrac{980}{1400}\\\\72\%=\dfrac{72}{100}=\dfrac{72\cdot14}{100\cdot14}=\dfrac{1008}{1400}\\\\\dfrac{800}{1400}<\dfrac{875}{1400}<\dfrac{980}{1400}<\dfrac{1008}{1400}[/tex]

therefore

[tex]\dfrac{4}{7};\ \dfrac{5}{8};\ 0.7;\ 72\%[/tex]

Other Questions