A medical cyclotron used in the production of medical isotopes accelerates protons to 6.5 MeV . The magnetic field in the cyclotron is 1.4 T . Part A What is the diameter of the largest orbit, just before the protons exit the cyclotron? Express your answer with the appropriate units. d d = nothing nothing SubmitRequest Answer Part B A proton exits the cyclotron 1.0 ms after starting its spiral trajectory in the center of the cyclotron. How many orbits does the proton complete during this 1.0 ms ? N N = nothing orbits SubmitRequest Answer Provide Feedback Next

Answer :

Answer:

a

  The largest diameter is   [tex]d =  0.523 \ m [/tex]

b

The number of revolution is   [tex]n  =  2.132 *10^{4}[/tex]

Explanation:

From the question we are told that

   The kinetic energy of the electron is  [tex]K =  6.5 MeV =  6.5 *10^6 * 1.60 *10^{-19} = 1.04 *10^{-12} \  J[/tex]

    The magnetic field is  [tex]B  =  1.4 \  T[/tex]

       The time is  [tex]t =  1 ms =  1*0^{-3} \  s[/tex]

Generally the kinetic energy of the proton is mathematically represented as

           [tex]KE  =  \frac{1}{2}  *  m * v^2[/tex]

Here m is the mass of the  proton with a value  [tex]m = 1.672 *10^{-27} \  kg[/tex]

    =>  [tex]v  = \sqrt{ \frac{2 *  K }{ m} }[/tex]

=>      [tex]v  = \sqrt{ \frac{2 *  1.04 *10^{-12}  }{ 1.672 *10^{-27}} }[/tex]

=>      [tex]v  = 3.5271 * 10^{7} \  m/s [/tex]

Generally the radius of the largest orbit is mathematically represented as

       [tex]r =  \frac{ m *  v}{ B  *  e}[/tex]

Here e is the charge on a proton with the value [tex]e =  1.60 *10^{-19} \  C[/tex]

         [tex]r =  \frac{ 1.672 *10^{-27} * 3.5271 * 10^{7} }{  1.4  *    1.60 *10^{-19} }[/tex]

=> [tex]r = 0.261 \ m [/tex]

Generally the diameter is

     [tex]d =  2 *  r[/tex]

=>       [tex]d =  2 *  0.261[/tex]

=>       [tex]d =  0.523 \ m [/tex]

Gnerally the period of revolution round the orbit is mathematically represented as

       [tex]T  = \frac{2 \pi  *  m }{B  *  e}[/tex]

=>    [tex]T  = \frac{2 * 3.142  *  1.672 *10^{-27}  }{1.4 *  1.60 *10^{-19}}[/tex]

=>    [tex]T  =  4.691 *10^{-8} \  s [/tex]

Generally the number of revolution is mathematically represented as

      [tex]n  =  \frac{t}{T}[/tex]

     [tex]n  =  \frac{1*10^{-3}}{4.691 *10^{-8} }[/tex]

      [tex]n  =  2.132 *10^{4}[/tex]

Other Questions