Answer :
Answer:
167688 ways
Step-by-step explanation:
Given that:
Number of boys = 17 &;
Number of girls = 19
The number of ways that five students can be chosen such that more boys than girls are selected are:
The ways of choosing = 5 boys 0 girls + 4 boys 1 girl + 3 boys 2 girls
The ways of choosing = [tex]^{17}C_5 +( ^{17}C_4 \times ^{19}C_1} )+( ^{17}C_3 + ^{19}C_2})[/tex]
The ways of choosing = [tex]\dfrac{17!}{5!(17-5)!} + \begin {pmatrix} \dfrac{17!}{4!(17-4)!} \times \dfrac{19!}{1!(19-1)!} \end {pmatrix} + \begin {pmatrix} \dfrac{17!}{3!(17-3)!} \times \dfrac{19!}{2!(19-2)!} \end {pmatrix}[/tex]
[tex]=\dfrac{17!}{5!(12)!} + \begin {pmatrix} \dfrac{17!}{4!(13)!} \times \dfrac{19!}{1!(18)!} \end {pmatrix} + \begin {pmatrix} \dfrac{17!}{3!(14)!} \times \dfrac{19!}{2!(17)!} \end {pmatrix}[/tex]
[tex]=\dfrac{17*16*15*14*13*12!}{5!(12)!} + ( \dfrac{17*16*15*14*13!}{4!(13)!} \times \dfrac{19*18!}{1!(18)!} ) + ( \dfrac{17*16*15*14!}{3!(14)!} \times \dfrac{19*18*17!}{2!(17)!} )[/tex][tex]=6188 + ( 2380\times19 ) + (680 \times171)[/tex]
= 167688 ways
Using the combination principle, the number of ways of selecting 5 students such that the number of boys is greater the number of girls selected ls 167688 ways.
- Number of boys = 17
- Number of girls = 19
Number of selections to be made = 5
In other to choose more boys than girls :
- 5 boys and 0 girls
- 4 boys and 1 girl
- 3 boys and 2 girls
Using the combination relation :
(17C5 × 19C0) + (17C4 × 19C1) + (17C3 × 19C2)
(6188 × 1) + (2380 × 19) + (680 × 171)
(6188 + 45220 + 116280)
= 167688 ways
Therefore, the Number of ways of making the selection is 167688 ways
Learn more :brainly.com/question/18796573