Answer :

Answer:

[tex]\mathbf{\iint _D y^2 dA= \dfrac{22}{3}}[/tex]

Step-by-step explanation:

From the image attached below;

We need to calculate the limits of x and y to find the double integral

We will notice that y varies from 1 to 2

The line equation for (0,1),(1,2) is:

[tex]y-1 = \dfrac{2-1}{1-0}(x-0)[/tex]

y - 1 = x

The line equtaion for (1,2),(4,1) is:

[tex]y-2 = \dfrac{1-2}{4-1}(x-1) \\ \\ y-2 = -\dfrac{1}{3}(x-1)[/tex]

-3(y-2) = (x -1)

-3y + 6 = x - 1

-x = 3y - 6 - 1

-x = 3y  - 7

x = -3y + 7

This implies that x varies from y - 1 to -3y + 7

Now, the region D = {(x,y) | 1 ≤ y ≤ 2, y - 1 ≤ x ≤ -3y + 7}

The double integral can now be calculated as:

[tex]\iint _D y^2 dA= \int ^2_1 \int ^{-3y +7}_{y-1} \ 2y ^2 \ dx \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[ 2xy ^2 \bigg]^{-3y+7}_{y-1} \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[2(-3y+7)y^2-2(y-1)y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[-6y^3 +14y^2 -2y^3 +2y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \int ^2_1 \bigg[-8y^3 +16y^2 \bigg ] \ dy[/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{y^4}{4}) +16(\dfrac{y^3}{3})\bigg ] ^2_1[/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{16}{4}-\dfrac{1}{4}) +16(\dfrac{8}{3}-\dfrac{1}{3})\bigg ][/tex]

[tex]\iint _D y^2 dA= \bigg[-8(\dfrac{15}{4}) +16(\dfrac{7}{3})\bigg ][/tex]

[tex]\iint _D y^2 dA= -30 + \dfrac{112}{3}[/tex]

[tex]\iint _D y^2 dA= \dfrac{-90+112}{3}[/tex]

[tex]\mathbf{\iint _D y^2 dA= \dfrac{22}{3}}[/tex]

${teks-lihat-gambar} ajeigbeibraheem

To answer this question, we need, first get the equations for the lines that enclosed the surface, and integrate according to the limits these equations give.

The solution is:

A = 22/3 square units

Let´s call points:

P ( 0 , 1 )    Q ( 1 , 2 ) and R ( 4 , 1 )

The equation for the line between P and R is:

y = 1

The equation for the line between P and Q is:

Slope-intercept equation is  y = m×x + b

The slope   m₁ = ( 2 - 1 ) / ( 1 - 0 )    m₁ = 1

and the line passes over the point  x = 0  y = 1   ; then

1 = 0 +b           b = 1

y = x + 1            ⇒    x = y - 1  

The equation  for the line between Q and R is:

m₂ = ( 1 - 2 ) / ( 4 - 1)    m₂ = - 1/3

y = ( -1/3)× x + b

when x = 1    y = 2

2 = ( - 1/3)×(1) + b

2 + 1/3 = b

b = 7/3

y = - (x/3) + 7/3            ⇒  x = 7 - 3×y

The double  integral becomes:

A = 2×∫∫ y² dx dy          ⇒   A = 2 ×∫₁² y²dy ∫dx  | (y - 1 ) y ( 7 - 3y)

A = 2 ×∫₁² y²dy  × x |  ( y - 1 ) y ( 7 - 3y)

A = 2 ×∫₁² y²dy  × [ 7 - 3×y - ( y - 1 )]

A = 2 ×∫₁² y²dy  × (8 - 4×y )      ⇒     A = 2 ×∫₁² (8×y² - 4×y³ ) dy

A = 2 × [ (8/3)×y³ - y⁴ | ₁²

A = 2 × [ 64/3 - 16 - (8/3) + 1 ]

A = 2  × ( 56/3 - 15 )

A = 2  × ( 56 - 45 /3)

A = 2 × 11/3

A = 22/3 square units

Related Link :https://brainly.com/question/9825328

${teks-lihat-gambar} jtellezd

Other Questions