Answer :
Answer:
a) v₀ₓ = 62.76 m / s, b) θ₁ = 17.6º, θ₂ = 67.0º
Explanation:
We can solve this exercise using the projectile launch ratios
a) Let's find the time it takes for the bullet to reach the water level
y = y₀ + v_{oy} t - ½ g t²
when it reaches the water its height is zero y = 0, as the bullet is fired horizontally its initial vertical velocity is zero
0 = y₀ + 0 - ½ g t²
t =[tex]\sqrt{2y_o/g}[/tex]
t = [tex]\sqrt{2 \ 7 /9.8}[/tex]
t = 1,195 s
now we can calculate the speed with the horizontal movement
x = v₀ₓ t
v₀ₓ = x / t
v₀ₓ = 75.0 / 1.195
v₀ₓ = 62.76 m / s
b) if the speed of the bullets is half of that found
v₀ = 62.76 / 2 = 31.38 m / s
let's write the expressions for the distance
x = v₀ cos θ t
y = y₀ + v_{oy} sin θ t - ½ g t²
t = [tex]\frac{x}{v_o \ cos \theta}[/tex]
we substitute
[tex]0 = y_o + v_o sin \theta \ \frac{x}{v_o \cos \thetay} - 1/2 g \ (\frac{x}{v_o \ cos \theta})^2[/tex]
[tex]0 = y_o + x tan \theta - \frac{1}{2} g \ \frac{x^2}{ v_o^2 \ cos^2 \theta}[/tex]
let's use the identified trigonometry
sec² θ = 1 + tan² θ
sec θ = 1 / cos θ
we substitute
[tex]0 = y_o + x tan \theta - \frac{g x^2}{2 v_o^2} ( 1 + tan^2 \theta)[/tex]
[tex]\frac{g x^2}{2v_o^2} tan^2 \theta - x tan \theta + \frac{gx^2}{2v_o^2} - y_o = 0[/tex]
we change variable
tan θ = H
[tex]\frac{gx^2}{2 v_o^2 } H^2 - x H + \frac{gx^2}{2v_o^2}-y_o =0[/tex]
we subtitle the values
[tex]\frac{9.8 \ 75^2}{2 \ 31.38^2} H^2 - 75 H + \frac{9.8 \ 75^2}{2 \ 31.38^2}-7 =0[/tex]
27.99 H² - 75 H + 20.99 = 0
H² - 2.679 H + 0.75 = 0
we solve the quadratic equation
H = [2.679 ± [tex]\sqrt{2.679^2 - 4 0.75}[/tex]] / 2
H = [2,679 ± 2,044] / 2
H₁ = 0.3175
H₂ = 2.3615
now we can find the angles
H₁ = tan θ₁
θ₁ = tan⁻¹ H₁
θ₁ = tan⁻¹ 0.3175
θ₁ = 17.6º
θ₂ = 67.0º
for these two angles the bullet hits the boat