Answer :

MrRoyal

Answer:

[tex]a = -2[/tex]

Step-by-step explanation:

Given

The attached function (graph)

Required

Find a

The given function is quadratic and will be solved using:

[tex]y = ax^2 + bx + c[/tex]

From the attachment:

[tex](x,y) = (-3,4)[/tex]

[tex](x,y) = (-2,2)[/tex]

[tex](x,y) = (-4,2)[/tex]

Substitute these values in [tex]y = ax^2 + bx + c[/tex]

For: [tex](x,y) = (-3,4)[/tex]

[tex]4 = a(-3)^2 + b(-3) + c[/tex]

[tex]4 = 9a -3b + c[/tex]

For: [tex](x,y) = (-2,2)[/tex]

[tex]2 = a(-2)^2 + b(-2) + c[/tex]

[tex]2 = 4a -2b + c[/tex]

For: [tex](x,y) = (-4,2)[/tex]

[tex]2 = a(-4)^2 + b(-4) + c[/tex]

[tex]2 = 16a -4b + c[/tex]

So, we have:

[tex]4 = 9a -3b + c[/tex] --- (1)

[tex]2 = 4a -2b + c[/tex] ---- (2)

[tex]2 = 16a -4b + c[/tex] --- (3)

Make c the subject in (1)

[tex]c = 4 - 9a + 3b[/tex]

Substitute [tex]c = 4 - 9a + 3b[/tex] in (2) and (3)

[tex]2 = 4a -2b + c[/tex]

[tex]2 = 4a -2b + 4 - 9a + 3b[/tex]

Collect Like Terms

[tex]-4 + 2 = 4a - 9a-2b + 3b[/tex]

[tex]-2 = - 5a+b[/tex] --- (4)

[tex]2 = 16a -4b + c[/tex]

[tex]2 = 16a - 4b + 4 - 9a + 3b[/tex]

Collect Like Terms

[tex]2 -4 = 16a - 9a + 3b- 4b[/tex]

[tex]-2 = 7a -b[/tex] --- (5)

Add 4 and 5

[tex]-2 = - 5a+b[/tex]

[tex]-2 = 7a -b[/tex]

--------------------------

[tex]-2 - 2 = -5a + 7a +b - b[/tex]

[tex]-4 = 2a[/tex]

Divide through by 2

[tex]-2 = a[/tex]

[tex]a = -2[/tex]

Other Questions