Answer :
Answer:
Step-by-step explanation:
6^2m × 4^-m÷ (3^m)^2 = [tex]\frac{6^{2m} * 4^{-m}}{(3^{m})^{2}}\\[/tex]
[tex]= \frac{(3*2)^{2m}*(2^{2})^{-m}}{3^{2*m}}\\\\=\frac{3^{2m}*2^{2m}*2^{-2m}}{3^{2m}}\\\\\\=3^{2m-2m}*2^{2m-2m}\\\\=3^{0}*2^{0}\\\\=1*1\\= 1[/tex]
Hint:
[tex]a^{m}*a^{n}= a^{m+n}\\\\(a^{m})^{n}=a^{m*n}\\\\\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]