Using the given equation find the missing coordinates of the points and then find the slope of the line for each equation y= 0.3x + 1; A(...;9), B(5;...) The slope is

Answer :

MrRoyal

Answer:

[tex]A = (\frac{80}{3},9)[/tex]

[tex]B = (5,2.5)[/tex]

The slope is 0.3

Step-by-step explanation:

Given

[tex]y = 0.3x + 1[/tex]

[tex]A = (-,9)[/tex]

[tex]B = (5,-)[/tex]

Required:

Fill in the gap and calculate the slope

In [tex]A = (-,9)[/tex]

[tex]y = 9[/tex] and x is ??

Substitute 9 for y in [tex]y = 0.3x + 1[/tex]

[tex]9 = 0.3x + 1[/tex]

Collect Like Terms

[tex]0.3x = 9 - 1[/tex]

[tex]0.3x = 8[/tex]

[tex]x = \frac{8}{0.3}[/tex]

[tex]x = \frac{80}{3}[/tex]

So:

[tex]A = (-,9)[/tex]

[tex]A = (\frac{80}{3},9)[/tex]

In [tex]B = (5,-)[/tex]

[tex]x = 5[/tex] and y is ??

Substitute 5 for x in [tex]y = 0.3x + 1[/tex]

[tex]y = 0.3 * 5 + 1[/tex]

[tex]y = 1.5 + 1[/tex]

[tex]y = 2.5[/tex]

So:

[tex]B = (5,-)[/tex]

[tex]B = (5,2.5)[/tex]

Calculating the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{2.5-9}{5 - \frac{80}{3}}[/tex]

[tex]m = \frac{-6.5}{\frac{15- 80}{3}}[/tex]

[tex]m = \frac{-6.5}{\frac{-65}{3}}[/tex]

[tex]m = \frac{-6.5*3}{-65}[/tex]

[tex]m = \frac{-19.5}{-65}[/tex]

[tex]m = 0.3[/tex]

Other Questions