Answer:
The midpoint of AB = (x,y)=(1,1)
Step-by-step explanation:
Given : A line AB
To find : Midpoint of AB.
Solution :
Consider the figure
Then , Points of A = [tex](x_{1} ,y_{1} )[/tex] = (-2,0)
Points of B = [tex](x_{2} ,y_{2} )[/tex] = (4,2)
Now to find mid point we will use midpoint formula :
[tex](x,y) =(\frac{x_{1} +x_{2} }{2},\frac{y_{1} +y_{2} }{2} )[/tex]
[tex](x,y) =(\frac{-2 +4 }{2},\frac{0 +2 }{2} )[/tex]
[tex](x,y) =(\frac{2 }{2},\frac{2 }{2} )[/tex]
[tex](x,y) =(1,1 )[/tex]
Thus, The midpoint of AB = (x,y)=(1,1)