help please triangles and trig

Answer:
[tex]\sin L = \frac{3}{5}[/tex]
[tex]\tan N = \frac{4}{3}[/tex]
[tex]\cos L = \frac{4}{5}[/tex]
[tex]\sin N = \frac{4}{5}[/tex]
Step-by-step explanation:
Given
The above triangle
First, we calculate the length LM using Pythagoras theorem.
[tex]LN^2 = LM^2 + MN^2[/tex]
[tex]10^2 = LM^2 + 6^2[/tex]
[tex]100 = LM^2 + 36[/tex]
Collect like terms
[tex]LM^2 = 100 - 36[/tex]
[tex]LM^2 = 64[/tex]
Take positive square root
[tex]LM=8[/tex]
Solving (a): Sin L
[tex]\sin L = \frac{Opposite}{Hypotenuse}[/tex]
[tex]\sin L = \frac{MN}{LN}[/tex]
[tex]\sin L = \frac{6}{10}[/tex]
Simplify
[tex]\sin L = \frac{3}{5}[/tex]
Solving (b): tan N
[tex]\tan N = \frac{Opposite}{Adjacent}[/tex]
[tex]\tan N = \frac{LM}{MN}[/tex]
[tex]\tan N = \frac{8}{6}[/tex]
Simplify
[tex]\tan N = \frac{4}{3}[/tex]
Solving (c): cos L
This calculated as:
[tex]\cos L = \frac{Adjacent}{Hypotenuse}[/tex]
[tex]\cos L = \frac{LM}{LN}[/tex]
[tex]\cos L = \frac{8}{10}[/tex]
Simplify
[tex]\cos L = \frac{4}{5}[/tex]
Solving (d): sin N
This is calculated using:
If [tex]a + b = 90[/tex]
Then: [tex]\sin a = \cos b[/tex]
So:
[tex]\sin N = \cos L[/tex]
[tex]\sin N = \frac{4}{5}[/tex]