Answer :

MrRoyal

Answer:

[tex]\sin L = \frac{3}{5}[/tex]

[tex]\tan N = \frac{4}{3}[/tex]

[tex]\cos L = \frac{4}{5}[/tex]

[tex]\sin N = \frac{4}{5}[/tex]

Step-by-step explanation:

Given

The above triangle

First, we calculate the length LM using Pythagoras theorem.

[tex]LN^2 = LM^2 + MN^2[/tex]

[tex]10^2 = LM^2 + 6^2[/tex]

[tex]100 = LM^2 + 36[/tex]

Collect like terms

[tex]LM^2 = 100 - 36[/tex]

[tex]LM^2 = 64[/tex]

Take positive square root

[tex]LM=8[/tex]

Solving (a): Sin L

[tex]\sin L = \frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin L = \frac{MN}{LN}[/tex]

[tex]\sin L = \frac{6}{10}[/tex]

Simplify

[tex]\sin L = \frac{3}{5}[/tex]

Solving (b): tan N

[tex]\tan N = \frac{Opposite}{Adjacent}[/tex]

[tex]\tan N = \frac{LM}{MN}[/tex]

[tex]\tan N = \frac{8}{6}[/tex]

Simplify

[tex]\tan N = \frac{4}{3}[/tex]

Solving (c): cos L

This calculated as:

[tex]\cos L = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos L = \frac{LM}{LN}[/tex]

[tex]\cos L = \frac{8}{10}[/tex]

Simplify

[tex]\cos L = \frac{4}{5}[/tex]

Solving (d): sin N

This is calculated using:

If [tex]a + b = 90[/tex]

Then: [tex]\sin a = \cos b[/tex]

So:

[tex]\sin N = \cos L[/tex]

[tex]\sin N = \frac{4}{5}[/tex]

Other Questions