Answer :

MrRoyal

Answer:

[tex]AB = 5[/tex]

Step-by-step explanation:

Given

[tex]A =(1,-1)[/tex]

[tex]B = (1,4)[/tex]

[tex]C = (8,4)[/tex]

Required

Distance between vertices A and B

To do this, we simply calculate distance AB using distance formula.

[tex]d = \sqrt{(x_1-x_2)^2 + (y_1 - y_2)^2}[/tex]

So, we have:

[tex]AB = \sqrt{(1-1)^2 + (4 - -1)^2}[/tex]

Simplify the expression the bracket

[tex]AB = \sqrt{0^2 + 5^2}[/tex]

Evaluate all squares

[tex]AB = \sqrt{0 + 25}[/tex]

[tex]AB = \sqrt{25}[/tex]

Take positive square root

[tex]AB = 5[/tex]

Hence, the line segment that connects A and B is 5 units long.

Other Questions