Answer :
Answer:
[tex]AB = 5[/tex]
Step-by-step explanation:
Given
[tex]A =(1,-1)[/tex]
[tex]B = (1,4)[/tex]
[tex]C = (8,4)[/tex]
Required
Distance between vertices A and B
To do this, we simply calculate distance AB using distance formula.
[tex]d = \sqrt{(x_1-x_2)^2 + (y_1 - y_2)^2}[/tex]
So, we have:
[tex]AB = \sqrt{(1-1)^2 + (4 - -1)^2}[/tex]
Simplify the expression the bracket
[tex]AB = \sqrt{0^2 + 5^2}[/tex]
Evaluate all squares
[tex]AB = \sqrt{0 + 25}[/tex]
[tex]AB = \sqrt{25}[/tex]
Take positive square root
[tex]AB = 5[/tex]
Hence, the line segment that connects A and B is 5 units long.