Answer :
Answer:
Yes
Step-by-step explanation:
Given
GH:
[tex]-6y - x = 2[/tex]
Required
Can EF be
[tex]4 = y - \frac{1}{6}x[/tex]
First, we determine the slope of GH
[tex]-6y - x = 2[/tex]
Solve for 6y
[tex]6y = -x - 2[/tex]
Solve for y
[tex]y = -\frac{1}{6}x - \frac{2}{6}[/tex]
[tex]y = -\frac{1}{6}x - \frac{1}{3}[/tex]
An equation has the form:
[tex]y =mx + b[/tex]
Where
[tex]m = slope[/tex]
By comparison:
[tex]m = -\frac{1}{6}[/tex]
Next, determine the slope of EF
[tex]4 = y - \frac{1}{6}x[/tex]
Make y the subject
[tex]y = -\frac{1}{6}x + 4[/tex]
The slope is:
[tex]m = -\frac{1}{6}[/tex]
Compare the slopes of both lines.
[tex]m=m = -\frac{1}{6}[/tex]
Since they have the same slopes, then the equation of EF is possible