An ordinary annuity was purchased 5 years ago. The annuity pays 8%compounded quarterly. The quarterly payments have been $500. What is the amount of interest earned on the annuity to date?

Answer :

Cricetus

Answer:

"$8,175.72" is the right solution.

Explanation:

The given values are:

Periodic payments,

C = $500

Interest rate,

r = 8%

i.e.,

 = [tex]\frac{8}{4}[/tex] = [tex]2[/tex]%

Number of periods,

n = 5 years,

i.e.,

  = [tex]5\times 4[/tex] = [tex]20[/tex]

As we know,

The present value of annuities 5 years ago will be:

⇒  [tex]Present \ Value =C\times \frac{[1-(1+r)^{-n}]}{5}[/tex]

On substituting the given values, we get

⇒                           [tex]=500\times \frac{[1-(1+0.02)^{-20}]}{0.02}[/tex]

⇒                           [tex]=500\times \frac{1-0.6729713331}{0.02}[/tex]

⇒                           [tex]=500\times 16.35143335[/tex]

⇒                           [tex]=8,175.72[/tex] ($)

Other Questions