Answer:
Step-by-step explanation:
If given tables in the picture show the proportional relationship,
Number of wheels (w) ∝ Number of buses (b)
w ∝ b
w = kb
Here, k = proportionality constant
k = [tex]\frac{w}{b}[/tex]
Number of buses (b) Number wheels (w) Wheels per bus [tex](\frac{w}{b})[/tex]
5 30 [tex]\frac{30}{5}=6[/tex]
8 48 [tex]\frac{48}{8}=6[/tex]
10 60 [tex]\frac{60}{10}=6[/tex]
15 90 [tex]\frac{90}{15}=6[/tex]
Here, proportionality constant is 6.
Similarly, If number of wheels (w) ∝ Number of train cars (t)
w = kt
Here, k = proportionality constant
k = [tex]\frac{w}{t}[/tex]
Number of train cars(t) Number of wheels(w) Wheels per train car ([tex]\frac{w}{t}[/tex])
20 184 [tex]\frac{184}{20}=9.2[/tex]
30 264 [tex]\frac{264}{30}=8.8[/tex]
40 344 [tex]\frac{344}{40}=8.6[/tex]
50 424 [tex]\frac{424}{50}=8.48[/tex]
Since, ratio of w and t is not constant, relation between number of wheels and number of train cars is not proportional.