Answer:
[tex]Probability\ that\ Parker'd\ pull\ off\ a\ White\ Sock(\ On\ His\ Second\ Pull)=\frac{6}{11}[/tex]
Step-by-step explanation:
[tex]We\ are\ given\ that,\\Total\ number\ of\ Black\ Socks=7\\Total\ number\ of\ White\ Socks=12\\Total\ number\ of\ Navy\ Socks=4\\Hence,\\Total\ number\ of\ Socks\ Parker\ has=12+4+7=23\\We\ know\ that,\\The\ Random\ experiment\ here,\ is\ pulling\ out\ a\ white\ sock,\ after\ pulling\\ a\ black\ sock.\\Hence,\\Since\ the\ Black\ Sock\ had\ been\ removed\ from\ his\ drawer,\ the\\ number\ of\ 'Socks'\ that\ remain\ in\ his\ drawer=23-1=22\\[/tex]
[tex]Hence,\\Total\ elementary\ events\ for\ this\ random\ experiment=22\\Now,\\We\ just\ need\ to\ find\ out\ the\ probability\ of\ pulling\ out\ a\ 'White\ Sock'.\\Hence,\\Number\ of\ White\ socks=12\\Hence,\\Favorable\ number\ of\ elementary\ events\ for\ the\ Random\ Experiment=12[/tex]
[tex]We\ also\ know\ that,\\Probability\ for\ an\ Event\ A=\frac{Favorable\ No.\ of\ Elementary\ Events}{Total\ no.\ of\ elementary\ events}[/tex]
[tex]Hence,\\Probability\ that\ Parker\ would\ pull\ off\ a\ white\ sock\ on\ his\\ second\ pull=\frac{12}{22}=\frac{6}{11}[/tex]