Answer :
Answer:
The probability that none of the balls selected is red ²⁴/₉₁
Step-by-step explanation:
Given;
number of red balls, R = 5
number of white balls, W = 4
number of blue balls, B = 6
Total number of balls, = 5 + 4 + 6 = 15
Probability of selecting 3 none red balls = P(WWW) or P(BBB) or P(WWB) or P(WBW) or P(BWW) or P(BBW) or P(BWB) or P(WBB)
[tex]P = (\frac{4}{15} \times \frac{3}{14} \times \frac{2}{13} ) + (\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13} ) + (\frac{4}{15} \times \frac{3}{14} \times \frac{6}{13} ) + (\frac{4}{15} \times \frac{6}{14} \times \frac{3}{13} ) + \\\\(\frac{6}{15} \times \frac{4}{14} \times \frac{3}{13} ) + (\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13} ) + (\frac{6}{15} \times \frac{4}{14} \times \frac{5}{13} ) + (\frac{4}{15} \times \frac{6}{14} \times \frac{5}{13} )[/tex]
[tex]P = \frac{24}{2730} + \frac{120}{2730} + \frac{72}{2730} +\frac{72}{2730} + \frac{72}{2730} + \frac{120}{2730} + \frac{120}{2730} + \frac{120}{2730} \\\\P = \frac{720}{2730} \\\\P = \frac{24}{91} \\\\[/tex]
Therefore, the probability that none of the balls selected is red ²⁴/₉₁