Answer :

Here's the solution,

figure 1.

by using trigonometry,

=》

[tex] \sin(60) = \dfrac{5 \sqrt{3} }{y} [/tex]

=》

[tex] \dfrac{ \sqrt{3} }{2} = \dfrac{5 \sqrt{3} }{y} [/tex]

=》

[tex] \dfrac{1}{y} = \dfrac{ \sqrt{3} }{2 \times 5 \sqrt{3} } [/tex]

=》

[tex] \dfrac{1}{y} = \dfrac{1}{10} [/tex]

=》

[tex]y = 10[/tex]

And,

=》

[tex] \cos(60) = \dfrac{w}{y} [/tex]

=》

[tex] \dfrac{1}{2} = \dfrac{w}{10} [/tex]

=》

[tex]w = 5[/tex]

So, values are :

  • y = 10
  • w = 5

figure 2.

Since, it's an isosceles triangle, w = y,

So, by pythagoras theorem :

=》

[tex] {w}^{2} + {y}^{2} = (7 \sqrt{2} ) {}^{2} [/tex]

=》

[tex] {w}^{2} + {w}^{2} = 98[/tex]

=》

[tex]2 {w}^{2} = 98[/tex]

=》

[tex] {w}^{2} = 49[/tex]

=》

[tex]w = \sqrt{49} [/tex]

=》

[tex]w = 7[/tex]

and we know, w = y, so their values will be equal to 7 units.

Other Questions