Answered

Assume there exists some hypothetical metal that exhibits ferromagnetic behavior and that has (1) a simple cubic crystal structure, (2) an atomic radius of 0.126 nm, and (3) a saturation flux density of 0.69 tesla. Determine the number of Bohr magnetons per atom for this material. Part 1 Correct answer icon Excellent! What is the volume, in m3, for this unit cell

Answer :

Answer:

[tex]n_b=0.947 Bohr\ magnetons/atom[/tex]

Explanation:

From the question we are told that:

Atomic radius [tex]r=0.126 nm[/tex]

Saturation flux density [tex]B= 0.69 T[/tex]

Generally the equation for number of Bohr magnetons per atom is mathematically given by

 [tex]n_b=\frac{B_s*Vc}{\mu_0*\mu_b}[/tex]

Where

 [tex]\mu_0=Magnetic\ permeability[/tex]

 [tex]\mu_0=1.257 * 10^{-6}[/tex]

 [tex]\mu_b=Magnetic\ Moment\ of\ an\ Atom[/tex]

 [tex]\mu_b=9.27* 10^{-24}[/tex]

 [tex]Vc=d^3[/tex]

 [tex]Vc=(2(0.126*10^-9))^3[/tex]

 [tex]Vc=1.6*10^{-29}[/tex]

Therefore the number of Bohr magnetons per atom for this material

 [tex]n_b=\frac{0.69*1.6*10^{-29}}{1.257 * 10^{-6}*9.27* 10^{-24}}[/tex]

 [tex]n_b=0.947 Bohr\ magnetons/atom[/tex]

Other Questions