Answer :
Answer:
Equation of line become [tex]y= \frac{- 1 *x}{3}+ 5[/tex].
Step-by-step explanation:
slope of the line
we know that the formula to calculate the slope between two points is equal to
Slope (m) = [tex]\frac{y_{2}- y_{1} }{x_{2}-x_{1}}[/tex].
substitute the values
(m) = [tex]\frac{6 - 7} }{ -3 - (-6)}[/tex].
(m) = [tex]\frac{-1} }{3}[/tex].
With the slope m and the point (-6, 7) find the equation of the line
we know that
the equation of the line in the point-slope form is equal to
[tex](y - y_{1}) = m ( x - x_{1})[/tex].
substitute the values
[tex](y - 7) = \frac{-1}{3} (x - ( -6))[/tex].
[tex](y - 7) = \frac{-1}{3} (x + 6)[/tex].
[tex](y - 7) = \frac{-x}{3} +2 )[/tex].
On adding both sides by 7.
[tex]y= \frac{-x}{3} - 2 + 7 [/tex].
[tex]y= \frac{-x}{3}+ 5[/tex].
Therefore, equation of line become [tex]y= \frac{-1 *x}{3}+ 5[/tex].