Answer :
Answer:
The correct option is [tex]478N[/tex]
Explanation:
Between two objects of a certain mass exists a force call the gravitational force. This force is the ''attraction'' force between the objects.
The equation to calculate this force is :
[tex]F_{G}=\frac{G.m_{1}.m_{2}}{d^{2}}[/tex] (I)
Where [tex]F_{G}[/tex] is the gravitational force.
Where G is the gravitational constant.
[tex]m_{1}[/tex] and [tex]m_{2}[/tex] are the masses of each object.
And [tex]d[/tex] is the distance between the objects (In fact is the distance between the mass centroid of each object).
In order to calculate the gravitational force, we need to replace the data in the equation.
The distance [tex]50000km[/tex] is equal to :
[tex]50,000km.(\frac{1000m}{1km})=50,000,000m[/tex]
Now, if we replace in the equation (I) all the data :
[tex]F_{G}=\frac{(6.673).(10)^{-11}\frac{Nm^{2}}{kg^{2}}.3000kg.(5.98).10^{24}kg}{(50,000,000m)^{2}}=478.854N[/tex]
[tex]F_{G}=478.854N[/tex] ≅ 478 N
We find that the magnitude of the force of gravity acting on the spaceship is 478 N.