Answer :
Answer:
[tex] \rm\displaystyle 4\cos( \theta) \cos \left( {2\theta} \right) \cos \left( {4 \theta } \right) [/tex]
Step-by-step explanation:
I assume the question want us to rewrite cosθ+cos3θ+cos5θ+cos7θ by using Sum-to-Product Formula and note that it's not an equation therefore θ can never be specified
===========================
so we want to rewrite cosθ+cos3θ+cos5θ+cos7θ by using Sum-to-Product Formula the good news is that the number of the function of the given expression is even so there's a way to do so, rewrite the expression in parentheses notation:
[tex] \rm\displaystyle \left( \cos( \theta) + \cos(3 \theta) \right) + \left(\cos(5 \theta) + \cos(7 \theta) \right)[/tex]
recall that,Sum-to-Product Formula of cos function:
[tex] \rm \boxed{\displaystyle \cos( \alpha ) + \cos( \beta ) = 2 \cos \left( \frac{ \alpha + \beta }{2} \right) \cos \left( \frac{ \alpha - \beta }{2} \right) }[/tex]
notice that we have two pair of function with which we can apply the formula thus do so,
[tex] \rm\displaystyle \left( 2\cos \left( \frac{ \theta + 3 \theta}{2} \right)\cos \left( \frac{ \theta - 3 \theta}{2} \right) \right) + \left(2\cos \left( \frac{5 \theta + 7 \theta}{2} \right) \cos \left( \frac{5 \theta - 7 \theta}{2} \right) \right)[/tex]
simplify addition:
[tex] \rm\displaystyle \left( 2\cos \left( \frac{4 \theta}{2} \right)\cos \left( \frac{ - 2\theta }{2} \right) \right) + \left(2\cos \left( \frac{12 \theta }{2} \right) \cos \left( \frac{ - 2 \theta}{2} \right) \right)[/tex]
simplify division:
[tex] \rm\displaystyle \left( 2\cos \left( {2 \theta} \right)\cos \left( { - \theta } \right) \right) + \left(2\cos \left( {6 \theta } \right) \cos \left( { - \theta} \right) \right)[/tex]
By Opposite Angle Identities we acquire:
[tex] \rm\displaystyle \left( 2\cos \left( {2 \theta} \right)\cos \left( { \theta } \right) \right) + \left(2\cos \left( {6 \theta } \right) \cos \left( { \theta} \right) \right)[/tex]
factor out 2cosθ:
[tex] \rm\displaystyle 2 \cos( \theta) (\cos \left( {2 \theta} \right) + \cos \left( {6 \theta } \right) )[/tex]
once again apply Sum-to-Product Formula which yields:
[tex] \rm\displaystyle 2 \cos( \theta) (2\cos \left( {4\theta} \right) \cos \left( {2 \theta } \right) )[/tex]
distribute:
[tex] \rm\displaystyle 4\cos( \theta) \cos \left( {2\theta} \right) \cos \left( {4 \theta } \right) [/tex]
and we're done!