Answer :
Answer:
a. -58 millivolts
Explanation:
The given Nernst equation is:
[tex]E_{ion} = 58 millivolts /z \Big[ log_{10} \Big( \dfrac{[ion]_{out}}{[ion]_{in}}\Big) \Big]}[/tex]
The equilibrium potential given by the Nernst equation can be determined by using the formula:
[tex]E_{Cl^-} = \dfrac{2.303*R*T}{ZF} \times log \dfrac{[Cl^-]_{out}} {[Cl^-]_{in}}[/tex]
where:
gas constant(R) = 8.314 J/K/mol
Temperature (T) = (20+273)K
= 298K
Faraday constant F = 96485 C/mol
Number of electron on Cl = -1
[tex]E_{Cl^-} = \dfrac{2.303*8.314*298} {(-1)*(96845)} \times log \dfrac{100} {10}[/tex]
[tex]E_{Cl^-} = - 0.05814 \ volts[/tex]
[tex]\mathsf{E_{Cl^-} = - 0.05814 \times 1000 \ milli volts}[/tex]
[tex]\mathsf{E_{Cl^-} \simeq - 58\ milli volts}[/tex]