Answer :
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \displaystyle \int \dfrac{4 - 3x^2}{(3x^2 + 4)^2} dx \\ \\ = \displaystyle \int \dfrac{4 - 3x^2}{x^2\left(3x + \dfrac{4}{x}\right)^2} dx \\ \\ = \displaystyle \int \dfrac{\dfrac{4}{x^2} - 3}{\left(3x + \dfrac{4}{x}\right)^2} dx \\ \\ \text{Let }u = 3x + \dfrac{4}{x} \implies du = \left(3 - \dfrac{4}{x^2}\right)\ dx \\ \\ \text{So the integral becomes} \\ \\ = \displaystyle -\int \dfrac{du}{u^2} \\ \\ = -\dfrac{u^{-2 + 1}}{-2 + 1} + C \\ \\ = \dfrac{1}{u} + C \\ \\ = \dfrac{1}{3x + \dfrac{4}{x}} + C \\ \\ = \boxed{\dfrac{x}{3x^2 + 4} + C}\end{array} [/tex]