Answer :

xero099

Answer:

The area of rectangle BEFD is 180 square units.

Step-by-step explanation:

After checking the figure given, we have the following information:

[tex]AD = 15[/tex], [tex]AB = 12[/tex], [tex]BC = 15[/tex], [tex]CD = 12[/tex]

By Pythagorean Theorem, we determine the length of the line segment BD:

[tex]BD = \sqrt{AB^{2}+AD^{2}}[/tex] (1)

[tex]BD = \sqrt{12^{2}+15^{2}}[/tex]

[tex]BD = 3\sqrt{41}[/tex]

In addition, we know the following characteristics of the rectangle BEFD:

[tex]BD = EF[/tex], [tex]EF = EC + CF[/tex], [tex]BE = FD[/tex] (2), (3), (4)

By Pythagorean Theorem:

[tex]BC^{2} = BE^{2}+EC^{2}[/tex] (5)

[tex]CD^{2} = CF^{2}+DF^{2}[/tex] (6)

By (3), (4), (5) and (6):

[tex]BC^{2} = BE^{2} + EC^{2}[/tex] (7)

[tex]CD^{2} = (EF-EC)^{2} + BE^{2}[/tex] (8)

By (7) in (8):

[tex]CD^{2} = (EF-EC)^{2}+ (BC^{2}-EC^{2})[/tex]

[tex]CD^{2} = EF^{2}-2\cdot EF\cdot EC + EC^{2}+BC^{2}-EC^{2}[/tex]

[tex]CD^{2} = EF^{2}-2\cdot EF\cdot EC +BC^{2}[/tex]

Then, we clear [tex]EC[/tex]:

[tex]2\cdot EF\cdot EC = EF^{2} + BC^{2} - CD^{2}[/tex]

[tex]EC = \frac{EF^{2}+BC^{2}-CD^{2}}{2\cdot EF}[/tex]

If we know that [tex]EF = 3\sqrt{41}[/tex], [tex]BC = 15[/tex] and [tex]CD = 12[/tex], then the length of the segment [tex]EC[/tex] is:

[tex]EC = \frac{75\sqrt{41}}{41}[/tex]

And the length of the line segment [tex]CF[/tex] is:

[tex]CF = EF - EC[/tex]

[tex]CF = 3\sqrt{41}-\frac{75\sqrt{41}}{41}[/tex]

[tex]CF = \frac{48\sqrt{41}}{41}[/tex]

And the length of the line segment [tex]DF[/tex] is determined by Pythagorean Theorem:

[tex]FD = \sqrt{CD^{2}-CF^{2}}[/tex]

[tex]FD = \sqrt{12^{2}-\left(\frac{48\sqrt{41}}{41} \right)^{2}}[/tex]

[tex]FD = \frac{60\sqrt{41}}{41}[/tex]

And the area of the rectangle is determined by the following formula:

[tex]A = FD\cdot EF[/tex]

[tex]A = \left(\frac{60\sqrt{41}}{41} \right)\cdot (3\sqrt{41})[/tex]

[tex]A = 180[/tex]

The area of rectangle BEFD is 180 square units.

Other Questions