Answer :
Answer:
0.7734 = 77.34% probability that at least 22 will contain an error. Probability above 50%, which means that this is likely to occur.
Step-by-step explanation:
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
About 12.5% of restaurant bills are incorrect.
This means that [tex]p = 0.125[/tex]
200 bills are selected at random
This means that [tex]n = 200[/tex]
Mean and standard deviation:
[tex]\mu = E(X) = np = 200*0.125 = 25[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{200*0.125*0.875} = 4.677[/tex]
Find the probability that at least 22 will contain an error.
Using continuity correction, this is [tex]P(X \geq 22 - 0.5) = P(X \geq 21.5)[/tex], which is 1 subtracted by the p-value of Z when X = 21.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{21.5 - 25}{4.677}[/tex]
[tex]Z = -0.75[/tex]
[tex]Z = -0.75[/tex] has a p-value of 0.2266.
1 - 0.2266 = 0.7734
0.7734 = 77.34% probability that at least 22 will contain an error. Probability above 50%, which means that this is likely to occur.