halp it has to do with volume, please and thank u.

Answer:
Step-by-step explanation:
Small cone:
r = 4 mm
h = 8 mm
Volume of small cone = [tex]\frac{1}{3}\pi r^{2}h[/tex]
[tex]=\frac{1}{3}*\pi *4*4*8\\\\=\frac{128}{3}*\pi \ mm^{3}[/tex]
Bigger cone :
r = 8 mm
h = 16 mm
Volume of bigger cone = [tex]\frac{1}{3}*\pi *8*8*16[/tex]
[tex]= \frac{1024}{3}\pi \ mm^{3}[/tex]
Volume of the space = Volume of bigger cone - volume of small cone
[tex]= \frac{1024}{3}\pi-\frac{128}{3} \pi \\\\=\frac{896}{3}*\pi \\\\= \frac{896}{3}*3.14\\\\= 937.81 \ cm^{3}[/tex]