Answer :
Complete Question
Complete Question is attached below
Answer:
[tex]P=1124.2ibf[/tex]
Explanation:
From the question we are told that:
Diameter [tex]d=1.2in[/tex]
Allowable Normal stress [tex]\sigma=27.5ksi=27.5 * 10^3 psi[/tex]
Generally the equation for Bending Stress is mathematically given by
[tex]\phi= \frac{32M}{ \pi d^3}[/tex]
[tex]\phi= {32 * 4 P}{\pi * 1.2^3}[/tex]
[tex]\phi=23.58 psi[/tex]
Generally the equation for Direct Normal Stress is mathematically given by
[tex]\sigma'=\frac{4P}{ \phi * 1.2^2}[/tex]
[tex]\sigma'= 0.88P psi[/tex]
Therefore
Total Normal stress
[tex]\sigma_T=23.58 + 0.88[/tex]
[tex]\sigma_T=24.46P[/tex]
Generally the equation for Allowable Stress is mathematically given by
[tex]\sigma=\sigma_T P[/tex]
[tex]P=\frac{\sigma}{\sigma_T}[/tex]
[tex]P=\frac{27.5 * 10^3}{24.46P}[/tex]
[tex]P=1124.2ibf[/tex]
