Answer :
Answer:
Hello,
Step-by-step explanation:
do I remind you of the formula :
where (a,b) is the vertex and y=k the directrix
[tex]y=\dfrac{(x-a)^2}{2(b-k)} +\dfrac{b+k}{2} \\\\\\y=-\dfrac{(x+4)^2}{4} -1 \\\\Using\ identification:\\a=-4\\2(b-k)=-4\\b+k=-2\\\\\left\{\begin{array}{ccc}b-k&=&-2\\b+k&=&-2\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}2b&=&-4\\2k&=&0\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}b&=&-2\\k&=&0\\\end{array}\right.\\[/tex]
Focus=(-4,-2)
Directrix: y=0
Vertex=(-4,-1)