Answer :
[tex]\\ \qquad\quad\sf{:}\dashrightarrow V=\dfrac{4}{9}πr^3[/tex]
- It is one third of the solid. sphere
[tex]\\ \qquad\quad\sf{:}\dashrightarrow V_{(Sphere)}[/tex]
[tex]\\ \qquad\quad\sf{:}\dashrightarrow 3\left(\dfrac{4}{9}πr^3\right)[/tex]
[tex]\\ \qquad\quad\sf{:}\dashrightarrow \dfrac{4}{3}\pi r^3[/tex]
Now
[tex]\\ \qquad\quad\sf{:}\dashrightarrow \pi r^3=\dfrac{3V}{4}[/tex]
[tex]\\ \qquad\quad\sf{:}\dashrightarrow r^3=\dfrac{3V}{4\pi}[/tex]
[tex]\\ \qquad\quad\sf{:}\dashrightarrow r=\sqrt[3]{\dfrac{3V}{4\pi}}[/tex]
Step-by-step explanation:
hmmm.
the other answer says the volume of a wedge is
4/9 × pi×r³
but I read here only
4/9 × pi³
so, what is correct ?
if I assume my reading is correct, then the solution is actually
4/9 × pi×r³ = 4/9 × pi³
pi×r³ = pi³
r³ = pi²
[tex]r = \sqrt[3]{ {\pi}^{2} } [/tex]
and that would mean
r ≈ 2.145