What is the value for ΔSºreaction for the following reaction, given the standard entropy values?
Al2O3(s) + 3H2(g) → 2Al(s) + 3H2O(g)

Substance Sº(J/mol*K)
Al2O3(s) 51
H2(g) 131
Al(s) 28
H2O(g) 189

Answer :

scme1702
Substituting the values:

51 + 3(131) = ΔH + 2(28) + 3(189)
ΔH = -225 J/mol

When written outside of the equation, this becomes 225 J/mol

Answer: The [tex]\Delta S^o[/tex] of the reaction is [tex]179Jmol^{-1}K^{-1}[/tex]

Explanation:

Entropy change of the reaction is defined as the difference between the total entropy change of the products and the total entropy change of the reactants.

Mathematically,

[tex]\Delta S_{rxn}=\sum [n\times \Delta S^o_{products}]-\sum [n\times \Delta S^o_{reactants}][/tex]

For the given chemical equation:

[tex]Al_2O_3(s)+3H_2(g)\rightarrow 2Al(s)+3H_2O(g)[/tex]

We are given:

[tex]\Delta S^o_{Al_2O_3}=51Jmol^{-1}K^{-1}\\\Delta S^o_{H_2}=131Jmol^{-1}K^{-1}\\\Delta S^o_{Al}=28Jmol^{-1}K^{-1}\\\Delta S^o_{H_2O}=189Jmol^{-1}K^{-1}[/tex]

Putting values in above equation, we get:

[tex]\Delta S^o_{rxn}=[(2\times \Delta S^o_{H_2O})+(3\times \Delta S^o_{H_2O})]-[(1\times \Delta S^o_{Al_2O_3})+(3\times \Delta S^o_{H_2})][/tex]

[tex]\Delta S^o=[(2\times 28)+(3\times 189)]-[(1\times 51)+(3\times 131)]=179Jmol^{-1}K^{-1}[/tex]

Hence, the [tex]\Delta S^o[/tex] of the reaction is [tex]179Jmol^{-1}K^{-1}[/tex]

Other Questions